OLIVER BRYNIARSKI

■ obryniarski@berkeley.edu • obryniarski.github.io/ • 661-808-7207 in oliver-bryniarski

EDUCATION

University of California, Berkeley

Aug. 2018 - Dec. 2021

B.A. Computer Science and Mathematics with Honors (Double Major)

GPA: 3.78

EXPERIENCE

Ambi Robotics, *Machine Learning Engineer*

Jan. 2022 - Current

- Designed and implemented IR stereo depth estimation, allowing us to use a much cheaper sensor for robotic grasping.
 - Trained with simulation and real data collected using a rig I set up and calibrated.
 - Implemented **self-supervised** MonoDepth to make use of production data.
 - Improved **real world** grasping performance by **5-10%** in general and **30+%** on edge cases (black/transparent objects).
 - Saved **\$6.5k** per machine.
- Implemented AmbiML (>50%), our machine learning inference and training platform.
 - Includes distributed training on cloud and on-prem hardware as well as data and model versioning.
 - Inference runs on dozens of production robots.
- Trained and A/B tested numerous machine learning models on production robots (classification with multiple sensors, instance/object segmentation, depth estimation).
- Fine tuned **transformers** for OCR of various text fields on package shipping labels.

Amazon, *Software Development Engineer Intern*

May 2021 - Aug. 2021

- Implemented variable aliasing in Amazon's buyer fraud detection **data loading** pipeline, fixing a huge pain point for applied scientists.
- Implemented graph convolutional networks for buyer fraud detection.

Berkeley Artificial Intelligence Research (BAIR) - Prof. John Canny, Undergraduate Researcher June 2020 - Dec. 2021

- Worked under David Chan and John Canny
- Researched **cluster based contrastive learning** methods without a fixed number of clusters.
- Implemented density-based clustering (**DBSCAN**) as a more theoretically sound alternative to **k-means**, improving performance over SOTA clustering methods.
- Assisted other master's students in the lab (literature review, paper review).

Machine Learning @ Berkeley, Undergraduate Researcher

Oct. 2020 - Dec. 2021

- Worked with Nicholas Carlini
- Researched new adversarial attack method called **Orthogonal Projected Gradient Descent**, breaking four published (CCS/CVPR) defense papers.
- Co-first author of ICLR 2022 paper, see publications below.

PUBLICATIONS

Evading Adversarial Example Detection Defenses with Orthogonal Projected Gradient Descent

O. Bryniarski, N. Hingun, P. Pachuca, V. Wang, N. Carlini, ICLR 2022. Found at https://arxiv.org/abs/2106.15023.

SKILLS

LANGUAGES: Python, Java, C, C++, SQL

FRAMEWORKS: PyTorch, Tensorflow, OpenCV, NumPy, Docker, AWS, Git, Pandas, Linux, Huggingface, TensorRT, ONNX

MATH: Measure Theory, Real Analysis, Topology, Differential Geometry, Optimization, Numerical Analysis